
CSC D70:
Compiler Optimization
Memory Optimizations

Prof. Gennady Pekhimenko
University of Toronto

Winter 2020

The content of this lecture is adapted from the lectures of
Todd Mowry, Greg Steffan, and Phillip Gibbons

Midterm Grades

2

Pointer Analysis (Summary)
• Pointers are hard to understand at compile time!

– accurate analyses are large and complex
• Many different options:

– Representation, heap modeling, aggregate modeling, flow
sensitivity, context sensitivity

• Many algorithms:
– Address-taken, Steensgard, Andersen
– BDD-based, probabilistic

• Many trade-offs:
– space, time, accuracy, safety

• Choose the right type of analysis given how the
information will be used

3

Caches: A Quick Review
• How do they work?

• Why do we care about them?

• What are typical configurations today?

• What are some important cache parameters that
will affect performance?

4

Memory (Programmer’s View)

5

Memory in a Modern System

6

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY
CONTROLLER

Ideal Memory
• Zero access time (latency)
• Infinite capacity
• Zero cost
• Infinite bandwidth (to support multiple accesses

in parallel)

7

The Problem
• Ideal memory’s requirements oppose each other
• Bigger is slower

– Bigger � Takes longer to determine the location
• Faster is more expensive

– Memory technology: SRAM vs. DRAM vs. Flash vs.
Disk vs. Tape

• Higher bandwidth is more expensive
– Need more banks, more ports, higher frequency, or

faster technology

8

Memory Technology: DRAM
• Dynamic random access memory
• Capacitor charge state indicates stored value

– Whether the capacitor is charged or discharged
indicates storage of 1 or 0

– 1 capacitor
– 1 access transistor

• Capacitor leaks through the RC path
– DRAM cell loses charge over time
– DRAM cell needs to be refreshed

9

row enable

_b
itl

in
e

• Static random access memory
• Two cross coupled inverters store a single bit

– Feedback path enables the stored value to persist in the “cell”
– 4 transistors for storage
– 2 transistors for access

Memory Technology: SRAM

10

row select

bi
tli

ne

_b
itl

in
e

Why Memory Hierarchy?
• We want both fast and large

• But we cannot achieve both with a single level of
memory

• Idea: Have multiple levels of storage
(progressively bigger and slower as the levels are
farther from the processor) and ensure most of
the data the processor needs is kept in the
fast(er) level(s)

11

The Memory Hierarchy

12

fast
smal
l

big but slow

move what you use here

backup
everything
here

With good locality of
reference, memory
appears as fast as
and as large as

fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r p

er
 b

yt
e

Memory Hierarchy
• Fundamental tradeoff

– Fast memory: small
– Large memory: slow

• Idea: Memory hierarchy

• Latency, cost, size,
 bandwidth

13

CPU
Main

Memory
(DRAM)RF

Cache

Hard Disk

Caching Basics: Exploit Temporal Locality
• Idea: Store recently accessed data in automatically

managed fast memory (called cache)
• Anticipation: the data will be accessed again soon

• Temporal locality principle
– Recently accessed data will be again accessed in the near

future
– This is what Maurice Wilkes had in mind:

• Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

• “The use is discussed of a fast core memory of, say 32000
words as a slave to a slower core memory of, say, one million
words in such a way that in practical cases the effective access
time is nearer that of the fast memory than that of the slow
memory.”

14

Caching Basics: Exploit Spatial Locality
• Idea: Store addresses adjacent to the recently accessed

one in automatically managed fast memory
– Logically divide memory into equal size blocks
– Fetch to cache the accessed block in its entirety

• Anticipation: nearby data will be accessed soon

• Spatial locality principle
– Nearby data in memory will be accessed in the near future

• E.g., sequential instruction access, array traversal
– This is what IBM 360/85 implemented

• 16 Kbyte cache with 64 byte blocks
• Liptay, “Structural aspects of the System/360 Model 85 II: the

cache,” IBM Systems Journal, 1968.

15

Optimizing Cache Performance

• Things to enhance:
– temporal locality
– spatial locality

• Things to minimize:
– conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

16

Two Things We Can Manipulate

• Time:
– When is an object accessed?

• Space:
– Where does an object exist in the address space?

How do we exploit these two levers?

17

Time: Reordering Computation

• What makes it difficult to know when an object is accessed?

• How can we predict a better time to access it?
– What information is needed?

• How do we know that this would be safe?

18

Space: Changing Data Layout

• What do we know about an object’s location?
– scalars, structures, pointer-based data structures, arrays,

code, etc.

• How can we tell what a better layout would be?
– how many can we create?

• To what extent can we safely alter the layout?

19

Types of Objects to Consider

• Scalars

• Structures & Pointers

• Arrays

20

Scalars

• Locals

• Globals

• Procedure arguments

• Is cache performance a concern here?
• If so, what can be done?

int x;
double y;
foo(int a){
 int i;
 …
 x = a*i;
 …
}

21

Structures and Pointers

• What can we do here?
– within a node
– across nodes

• What limits the compiler’s ability to optimize here?

struct {
int count;
double velocity;
double inertia;
struct node *neighbors[N];

} node;

22

Arrays

• usually accessed within loops nests
– makes it easy to understand “time”

• what we know about array element addresses:
– start of array?
– relative position within array

double A[N][N], B[N][N];
…
for i = 0 to N-1

for j = 0 to N-1
A[i][j] = B[j][i];

23

Handy Representation: “Iteration
Space”

• each position represents an iteration

for i = 0 to N-1
for j = 0 to N-1

A[i][j] =
B[j][i];

i

j

24

Visitation Order in Iteration Space

• Note: iteration space ≠ data space

for i = 0 to N-1
for j = 0 to N-1

A[i][j] =
B[j][i];

i

j

25

When Do Cache Misses Occur?
for i = 0 to N-1

for j = 0 to N-1
A[i][j] =

B[j][i];

i

j

i

j

A B

26

When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

i

j

27

Optimizing the Cache Behavior of
Array Accesses
• We need to answer the following questions:

– when do cache misses occur?

• use “locality analysis”
– can we change the order of the iterations (or possibly data layout) to

produce better behavior?

• evaluate the cost of various alternatives
– does the new ordering/layout still produce correct results?

• use “dependence analysis”

28

Examples of Loop Transformations
• Loop Interchange
• Cache Blocking
• Skewing
• Loop Reversal
• …

29

Loop Interchange

• (assuming N is large relative to cache size)

for i = 0 to N-1
for j = 0 to N-1

A[j][i] =
i*j;

i

j

Hit
Miss

j

i

for j = 0 to N-1
for i = 0 to N-1

A[j][i] =
i*j;

30

Cache Blocking (aka “Tiling”)

now we can exploit temporal locality

for i = 0 to N-1
for j = 0 to N-1

f(A[i],A[j]);

for JJ = 0 to N-1 by B
for i = 0 to N-1

for j = JJ to
min(N-1,JJ+B-1)

f(A[i],A[j]);

i

j

i

j

A[i] A[j]
i

j

i

j

A[i] A[j]

31

Impact on Visitation Order in Iteration
Space

i

j

for i = 0 to N-1
for j = 0 to N-1

f(A[i],A[j]);

for JJ = 0 to N-1 by B
for i = 0 to N-1

for j = JJ to
min(N-1,JJ+B-1)

f(A[i],A[j]);

i

j

32

Cache Blocking in Two Dimensions

• brings square sub-blocks of matrix “b” into the cache
• completely uses them up before moving on

for i = 0 to N-1
for j = 0 to N-1

for k = 0 to N-1
c[i,k] +=

a[i,j]*b[j,k];

for JJ = 0 to N-1 by B
for KK = 0 to N-1 by B

for i = 0 to N-1
for j = JJ to

min(N-1,JJ+B-1)
for k = KK to

min(N-1,KK+B-1)
c[i,k] +=

a[i,j]*b[j,k];

33

Predicting Cache Behavior through
“Locality Analysis”
• Definitions:

– Reuse:
• accessing a location that has been accessed in the past

– Locality:
• accessing a location that is now found in the cache

• Key Insights
– Locality only occurs when there is reuse!
– BUT, reuse does not necessarily result in locality.

• why not?

34

Steps in Locality Analysis
1. Find data reuse

– if caches were infinitely large, we would be finished
2. Determine “localized iteration space”

– set of inner loops where the data accessed by an iteration is expected
to fit within the cache

3. Find data locality:

– reuse ∩ localized iteration space ⇒ locality

35

Types of Data Reuse/Locality
for i = 0 to 2

for j = 0 to 100
A[i][j] = B[j][0] +

B[j+1][0];

Hit
Miss

i

j

A[i][j]

Spatial

i

j

B[j+1][0]

Temporal

i

j

B[j][0]

Group

36

Reuse Analysis: Representation

• Map n loop indices into d array indices via array indexing function:

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] +
B[j+1][0];

37

• Temporal reuse occurs between iterations and
whenever:

• Rather than worrying about individual values of
and, we say that reuse occurs along direction vector
when:

• Solution: compute the nullspace of H

Finding Temporal Reuse

38

Temporal Reuse Example

• Reuse between iterations (i1,j1) and (i2,j2) whenever:

• True whenever j1 = j2, and regardless of the difference
between i1 and i2.
– i.e. whenever the difference lies along the nullspace of ,
– which is span{(1,0)} (i.e. the outer loop).

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] +
B[j+1][0];

39

More Complicated Example

• Nullspace of = span{(1,-1)}.

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

Hit
Miss

i

j

40

Computing Spatial Reuse

• Replace last row of H with zeros, creating Hs
• Find the nullspace of Hs

• Result: vector along which we access the same
row

41

Computing Spatial Reuse: Example

• Hs =

• Nullspace of Hs = span{(0,1)}
– i.e. access same row of A[i][j] along inner loop

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] +
B[j+1][0];

i

j

Hit
Miss

42

Computing Spatial Reuse: More
Complicated Example

• Hs =

• Nullspace of H = span{(1,-1)}

• Nullspace of Hs = span{(1,0),(0,1)}

for i = 0 to N-1
for j = 0 to N-1

A[i+j] = i*j;

Hit
Miss

i

j

43

Group Reuse

• Only consider “uniformly generated sets”
– index expressions differ only by constant terms

• Check whether they actually do access the same cache line
• Only the “leading reference” suffers the bulk of the cache misses

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] +
B[j+1][0];

44

Localized Iteration Space

• Given finite cache, when does reuse result in locality?

• Localized if accesses less data than effective cache size

for i = 0 to 2
for j = 0 to 8

A[i][j] = B[j][0] +
B[j+1][0];

for i = 0 to 2
for j = 0 to 1000000

A[i][j] = B[j][0] +
B[j+1][0];

i

j

B[j+1][0]

i

j

B[j+1][0]

Localized: both i and j loops
(i.e. span{(1,0),(0,1)})

Localized: j loop only
(i.e. span{(0,1)})

45

Computing Locality
• Reuse Vector Space ∩ Localized Vector Space ⇒ Locality Vector Space

• Example:

• If both loops are localized:
– span{(1,0)} ∩ span{(1,0),(0,1)} ⇒ span{(1,0)}
– i.e. temporal reuse does result in temporal locality

• If only the innermost loop is localized:
– span{(1,0)} ∩ span{(0,1)} ⇒ span{}
– i.e. no temporal locality

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] +
B[j+1][0];

46

CSC D70:
Compiler Optimization
Memory Optimizations

Prof. Gennady Pekhimenko
University of Toronto

Winter 2020

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

